TGF-β -Induced expression of the Anti-Apoptotic pAI- protein Requires eGFR signaling
نویسنده
چکیده
TGF-β1 and its target gene encoding plasminogen activator inhibitor-1 (PAI-1) are major regulators of capillary outgrowth, vessel maturation and angiogenic network stability. The increasing realization of the complexity of PAI-1 action in the vascular system requires analysis of specific signaling events that impact its expression in a physiologically-relevant cell system. PAI-1 was required for tubular differentiation and maintenance of cellular survival in complex gels since targeted disruption of PAI-1 synthesis or activity with antisense constructs or function-blocking antibodies resulted in network regression. Indeed, serum-deprivation-induced apoptosis of tubulogenic T2 cells was concentration-dependently inhibited by addition of a stable PAI-1 mutant protein consistent with the established pro-survival role of PAI-1 in vascular endothelial cells. PAI-1 induction and ERK pathway activation in response to TGF-β1 was attenuated by EGFR signaling blockade (with AG1478) or preincubation with the MMP/ADAM inhibitor GM6001. The combination of AG1478 + GM6001 completely ablated both responses suggesting that EGFR transactivation is important in PAI-1 gene control and may, at least partially, involve ligand shedding. TGF-β1-stimulated PAI-1 induction was preceded, in fact, by EGFR phosphorylation on Y845 (a src kinase target residue). EGFR1 knockdown with lentiviral shRNA constructs, moreover, effectively decreased (by 75%) TGF-β1-stimulated PAI-1 expression whereas infection with control (i.e. GFP) viruses had no effect. TGF-β1 failed to induce PAI-1 synthesis in EGFR-deficient fibroblasts while introduction of a wild-type EGFR1 construct in EGFR-/cells rescued the PAI-1 response to TGF-β1 confirming, at a genetic level, the targeted knockdown data. The continued clarification of novel cooperative signaling cascades that impact expression of important angiogenic genes (e.g. PAI-1) may provide therapeutically useful targets to manage the pathophysiology of human neoplastic and vascular diseases.
منابع مشابه
TGF-β1-Induced Expression of the Anti-Apoptotic PAI-1 Protein Requires EGFR Signaling.
TGF-β1 and its target gene encoding plasminogen activator inhibitor-1 (PAI-1) are major regulators of capillary outgrowth, vessel maturation and angiogenic network stability. The increasing realization of the complexity of PAI-1 action in the vascular system requires analysis of specific signaling events that impact its expression in a physiologically-relevant cell system. PAI-1 was required fo...
متن کاملDirected Blocking of TGF-β Receptor I Binding Site Using Tailored Peptide Segments to Inhibit its Signaling Pathway
Background: TGF-β isoforms play crucial roles in diverse cellular processes. Therefore, targeting and inhibiting TGF-β signaling pathway provides a potential therapeutic opportunity. TGF-β isoforms bind and bring the receptors (TβRII and TβRI) together to form a signaling complex in an ordered manner. Objectives: Herein, an antagonistic variant of TGF-β (AnTβ)...
متن کاملTGF-β1-Induced Expression of the Poor Prognosis SERPINE1/PAI-1 Gene Requires EGFR Signaling: A New Target for Anti-EGFR Therapy
Increased transforming growth factor-beta (TGF-beta) expression and epidermal growth factor receptor (EGFR) amplification accompany the emergence of highly aggressive human carcinomas. Cooperative signaling between these two growth factor/receptor systems promotes cell migration and synthesis of stromal remodeling factors (i.e., proteases, protease inhibitors) that, in turn, regulate tumor inva...
متن کاملEffects of fibromodulin protein expression on NFkB and TGFβ signaling pathways in liver cancer cells
Introduction: The incidence rate of liver cancer is continuously increasing. Currently, gene therapy is applied to improve various medical issues such as cancer treatment approaches. Correspondingly, fibromodulin involves in many biological and physiological processes through interaction with growth factors and signaling pathway receptors. The aim of this study was to investigate the effects of...
متن کاملReactive Oxygen Species and p38MAPK Have a Role in the Smad2 Linker Region Phosphorylation Induced by TGF-β
Background: Transforming growth factor-β (TGF-β) in addition to the C-terminal region can phosphorylate receptor-regulated Smads (R-Smads) in their linker region. The aim of the present study was to evaluate the role of signaling mediators such as NAD(P)H oxidases (reactive oxygen species [ROS] generators), ROS, and ROS-sensitive p38 mitogen-activated protein kinase (p38MAPK) in this signaling ...
متن کامل